GAMES101 - 01 to 04
Source
- 视频:https://www.bilibili.com/video/BV1X7411F744?share_source=copy_web
- 资料:https://sites.cs.ucsb.edu/~lingqi/teaching/games101.html
Lecture 01 Overview of Computer Graphics
- 讲了图形学的应用,比如游戏、电影特效、动画、仿真、VR 等等;
- 101 主要包括四个部分:
- 光栅化(opengl 和 shader 是怎么运作的)
- 曲线和栅格
- 光线追踪
- 动画 & 模拟
- 不会讲图形库 api,如 opengl,其实就是原理性的东西;
Lecture 02 Review of Linear Algebra
图形学包括很多学科的内容
- 数学:线性代数、微积分、统计学;
- 物理:力学、光学;
- 其它:信号处理、数值分析;
- 一定的审美能力;
向量标准化
- 是指向量 a 的长度,长度为 1 的向量规定为 单位向量 ;
- 单位向量可以表示为:,即单位向量=向量/向量长度;
- 通常可以用一个单位向量表示方向;
- 会有一些向量的计算,比如求两个向量的和,也就是把两个向量的头尾坐标相加,即可获得结果向量;
向量加法
一般表示为 A=4x+3y 这样的形式,因为这样 容易计算向量的长度 (勾股定理),貌似这个很重要;
向量乘法-点乘(Vector Multiplication - Dot Product):
- 一般表示为;
- 右边是向量长度和夹角的数字乘法,因此可以将等式转换成这样 ,可以发现点乘非常大的价值就是求向量夹角余弦值;
- 假如已知的向量是单位向量(长度为 1),那求夹角就更简单了 ;
- 点乘满足 交换律、结合律、分配律 ;
- 计算方法 :;
- 应用上,除了刚才提到的计算 两个向量的夹角 ,还有就是可以计算一个向量到另一个向量的 投影向量长度 ;
- 含义上,点乘可以测量两个两个向量有多么接近、分解向量、还可以判断某两个向量的方向关系(相同、相反、垂直);
向量乘法-叉乘(Vector Multiplication - Cross Product):
- 意味着求 a 和 b 所在平面的一个法向量,法向量的方向满足右手螺旋定则,即用右手四指表示从 a 旋转到 b 的方向,然后拇指所指方向就是这个法向量的方向;
- 公式:
- 交换律 :根据右手旋转坐标系,从 a 旋转到 b 和从 b 旋转到 a 获得的法向量是相反的,可得叉乘不满足交换律,要交换必须给其中一个向量加一个负号(可以根据 x 和 y 轴算出 z 轴,从而建立一个直角坐标系);
- **结果向量长度 ** :向量叉乘结果向量的长度,等于两个向量长度相乘再乘上两个向量夹角的正弦;
- 同方向单位向量的叉积 :同方向的向量叉乘会得到一个 0 向量;
- 结合律、分配律 :除了交换律需要加个负号之外,结合律、分配律都是满足的;
- 矩阵形式 :叉积可以表现成矩阵形式 ,这个三阶矩阵视频里叫做 dual matrix of vector a,翻译好像叫 a 的对偶矩阵?不知道是啥意思,然后这个矩阵乘出来的向量就是 ;
- 作用:
- 判断向量的左右位置:右手螺旋定则,如果 的结果是正的,那 a 肯定在 b 右边,反之亦然。比如给你三个点,组成一个三角形,要求一个点 P 是否在三角形内。那只要求三条边分别与三个点和 P 连线的向量之叉积,就可以判断三条连线是否都在边的左边,从而可以判断 P 是否在三角形内;
- 判断法向量的内外;
- :给了个公式,u、v、w 是三个互相垂直的单位向量,构成一个三维的直角坐标系,然后说可以通过点乘求任意向量在坐标轴上的投影,但是没太懂;
- 搜了一下理解了,其实这里是通过求得三个投影向量,最后相加得出原向量 p。首先 u、v、w 是三个坐标轴上的单位向量,回想之前点乘的公式 ,用在此处就是,u 是坐标轴上的单位向量,长度为 1,可得,cosθ 又等于邻边比斜边,就是斜边长度,易得就是向量 p 在 u 所在轴上的投影向量长度,而由于是坐标轴上的单位向量,因此给每一个分量乘上投影向量的长度,就可以得到投影向量本身,三个投影向量加起来就可以得到要求的向量 p;
矩阵(Matrix)
- 矩阵乘法 :,只有矩阵 1 的列数和矩阵 2 的行数相同,矩阵乘法才有意义;
- 计算积矩阵中 i, j 位置的值:直接求矩阵 1 第 i 行和矩阵 2 第 j 列的点积 ;
- 矩阵乘法 :交换律不成立,结合律和分配律都是成立的,尤其结合律比较有用;
- 转置矩阵 :如图,有一个性质,矩阵积的转置等于其各自转置后调换顺序的积,;
- 单位矩阵 :,它乘任何矩阵都等于矩阵本身;
- 逆矩阵 :结合单位矩阵,它有几个性质;
- ,矩阵乘自己的逆矩阵等于单位矩阵;
- ,与转置矩阵那个定理相同;
- 向量乘法转矩阵乘法 :
- ;
- ,这个称为 dual matrix of A,暂时不清楚是怎么生成的;
Lecture 03 Transformation
2D 变换(2D Transforms)
- 缩放(Scale)
- 数学公式可以表达为:,,也就是 x、y 分别乘上缩放比例;
- 显然这个公式可以转换为矩阵形式:,转换出来跟上面的数学公式是相同的;
- 切变(Shear)
- 有点类似倾斜?webgl 那本书就没讲到这个,这里我们用图来推论它的公式;
- 显然,在变换前后,y 坐标是不变的;
- y = 0 时,x 坐标是没有发生变化的;
- y = 1 时,假设 x 坐标向右偏移了 a 距离,此时形状左端的 x 坐标为 a,右端的 x 坐标就是 a+1;
- 考虑到它是一个均匀的变化,当 y = 1/2 时,x 轴的偏移距离则为 a/2,形状左端的 x 坐标则为 a/2,右端的坐标则为 a/2+1;
- 此时我们推断数学公式:,;
- 转化为矩阵形式:;
- 旋转(Rotate)
- 用一个特殊点来推断通用的公式,图示为点 (1, 0) 旋转 θ 角的情况,可得 cosθ 对应矩阵位置 A,sinθ 对应矩阵位置 C;同理 B 位置对应的是 -sinθ,D 位置对应的是 cosθ;
- 即:;
- 推导:线性变化都可以用矩阵来表示,但我们必须找到一个相同维度的矩阵,也就是将其表示在同一个矩阵中,如何?
齐次坐标 (Homogeneous coodinates)
- 平移(Translation)
- 是最特殊的一种变换,因为它不能写成上面那些单纯的矩阵相乘形式,他必须加上一个常数;
- 因为它要加上常数,不能用乘法表示,所以 平移不属于线性变化 ;
- 人们不想把平移当成一种特殊用例,所以如何将它们都进行通用的表示呢?
- 数学公式:,;
- 矩阵形式:;
- 齐次坐标(Homogeneous coodinates)
- 根据平移的矩阵公式扩充为:,这就是用齐次坐标表示平移的方式;
- 探讨齐次坐标的意义;
- 第一,引入 w 分量来表示平移,其中需要区分向量和点的表示,向量表示为,点表示为,这是因为新引入的维度是用来表示平移的,而 向量具有平移不变性 ,所以不需要考虑它的平移属性,置为 0 即可;
- 第二,w 分量还包含点、向量之间加减法的实际意义,比如:
- ,他们加出来 w 分量仍是 0,也表示向量,符合向量加法的原理;
- ,结果 w 分量是 1,表示一个点,含义是点朝某个方向移动,结果仍是一个点;
- ,结果分量是 0,表示一个向量,含义是两点之间的连线可以表示一个方向,也符合坐标减法的原理;
- ,比较特殊,因为这样加起来 w 分量会变成 2,后来人们给了它一个定义,就是将三个分量同时除以 w,得到,突然发现这不就是表示,两点相加,得到的就是线段中点?笑死;
仿射变换(Affine Transformations)
- 仿射变换(Affine Transformations)
- 线性变化(旋转、切变、缩放)+平移,给他一个新名字叫做 仿射变换 ;
- 用齐次坐标表示仿射变换:;
- 逆变换(Inverse Transform)
- 逆变换反应到数学上,就是乘上变换的逆矩阵;
- 复杂变换分解(Decomposing Complex Transforms),比如下图中的正方形,我想让他绕 c 点旋转,那就可以先将 c 点平移回原点,再将正方形旋转,然后乘上刚才平移的逆矩阵,就可以实现了;
- 组合变换(Compose Transform)
- 表现为矩阵相乘,会发现,变换的顺序不同,变换的结果也不同,这一点对应了之前矩阵乘法不满足交换律的知识(用矩阵去代表图形变换很巧妙,变换和数学意义有很多是一一对应的);
- 用矩阵乘法表示变换时,应用变换的方向是 从右向左 的;
- 变换可以组合多个;
3D 变换(3D Transforms)
- 齐次坐标
- 三维增加了一个维度,但各种变换与二维情况下并无区别,向量就可以表示为,点表示为;
- 矩阵表示变为;
- 平移和线性变换,哪个先进行?在 2D 变换中,我们在推导出需要使用 w 分量之前,数学式是下图,可以发现平移是加法,所以是先进行线性变换,再进行平移;
Lecture 04 Transformation Cont.
题外话
- 旋转矩阵逆变化的推导
- 旋转矩阵的公式是这样的:;
- 它的 逆矩阵 就是旋转 -θ 度,可以表示为:,这是因为把 -θ 代入后,由 cos(-θ)=cosθ、sin(-θ)=-sinθ 两个公式可以推导出;
- 而旋转矩阵的 转置矩阵 ,也是这样表示:;
- 可以得出一个定理, 旋转矩阵的逆矩阵跟转置矩阵相同;
- 在数学上,逆矩阵等于转置矩阵的情况,有一个专门的名词表示: 正交矩阵 ;
3D 变换(3D Transforms)
- 书接上回
- 3D 缩放 :很简单,加一个坐标;
- 3D 平移 :很简单,加一个坐标;
3D 旋转(3D Rotations)
- 先按照 2D 上的情况来拓展
- 绕 x 轴旋转时,x 轴坐标是不变的,那就将 x 轴所表示的行列忽视掉,设为单位矩阵的形式(1, 0, 0);
- 绕 z 轴旋转同理,将 z 轴的行列去掉;
- 绕 y 轴这里,本质相同,也是将 y 轴行列去掉,但理解上有些不同;
- 如图所示,根据右手螺旋定则,绕 x 轴旋转是从 y 转到 z,它们叉乘之后正方向就是 x 轴所在方向;同理 z 轴也可以这样推出;但 y 轴不同,从 z 轴转到 x 轴,叉乘结果是 y 轴的负方向 ,所以按这个理解,绕 y 轴旋转的变化矩阵就是,按上一节的推导,这里的变化矩阵应该是正常 旋转的逆矩阵;
- Rodrigues' Rotation Formula
- ;
- 推导过程很复杂;
- 图中说的 n 轴是指可以只用一个向量表示;
- 如果非要以不过原点的轴旋转,则可以将轴平移到过原点的位置,操作完旋转后,再用平移的逆变换移回原位;
视图/相机变换(View / Camera Transformation)
- 包含 模型变换(Model Transformation)、视图变换(View Transformation)、投影变换(Projection Transformation);
- 定义相机位置:
- 相机位置(Position);
- 观测方向(Look-at Direction);
- 上方向(Up Direction);
- 相机与物体的相对关系:
- 相机与物体的位置是相对的,也就是说同样的变换,摄像机变换和物体变换都能做到相同的效果;
- 因此为了简化理解,则固定摄像机的位置,只变换物体的位置;
- 默认方向一般是 将相机放在原点位置,以 Y 轴为上方向,-Z 轴为观测方向 ;
- 如果有任意的相机位置,如何将其移到默认位置?
- 将起始点 e 移到原点;
- 将观测方向 g 旋转到 -Z 轴;
- 将上方向 t 旋转到 Y 轴;
- g × t 的方向也会自动旋转到 X 轴上;
- 4 中的推演如何写成矩阵形式?
- 直接写 g 旋转到 -Z 这种不好写,转换思路,可以把三个变换的逆变换都写出来,比如 -Z 到某某某向量的旋转,这样比较好求;
- 本课之初知道了旋转矩阵是正交矩阵,逆矩阵=转置矩阵,所以可以在求完三个逆旋转之后,求其转置矩阵,再结合上最后的平移变换,就是最终的公式了;
- 先求旋转逆矩阵:;
- 求转置矩阵,得到正确的旋转矩阵:;
- 最终再结合上平移矩阵即可;
投影变换(Projection Transformation)
- 分为 正交投影(Orthorgraphic Projection)与透视投影(Perspective Projection) ;
- 正交投影不会带来近大远小的现象,透视投影才会;
- 正交投影通常用于工程制图领域;
- 正交投影
- 将摄像机放在初始位置(原点、观测方向为 -Z、上方向为 Y);
- 在正交投影下,这样就可以忽视掉 Z 轴的存在,因为 z 坐标怎么变投影结果都是一样的;
- 将 Z 轴扔到不便数学表达;
- 下面需要找一种容易描述的方式;
- 通常我们会将一个长方体映射到一个 标准立方体(Canonical Cube) 上;
- 先将中心点移到坐标系原点,然后再将各边拉伸到 [0, 1]、[0, -1] 等位置;
- 这里的 [l, r]、[b, t]、[f, n] 是指某一个面的中心点,分别对应左右、底顶、远近;
- 数学式包含缩放与平移,非常直观;
- 由于观测方向是 -Z,所以离摄像机近的 z 坐标反而大,所以 n >= f,有些不便理解;
- OpenGL 用左手系,就可以规避这个问题,但是左手系存在别的问题;
- 透视投影
- 特征:使用最广泛、近大远小、平行线不再平行;
- 复习:齐次坐标中,对所有分量乘同一个数,表示的都是同一个点;
- 如何实现:
- 1)与正交投影一样,定义远近两个平面,但透视投影中,远平面会更大一些;
- 2)将远平面挤压成跟近平面一样的大小;
- 3)再对两个平面做正交投影;
- 这样将透视投影拆分成了两个步骤,更好理解;
- 看下图,我们的目的是要将远平面压缩成近平面的大小,这样可以构造出一对相似三角形;
- 假设目标平面的 Z 坐标是 n,则两平面 Z 坐标之比为;
- 相似三角形各边之比相等,因此、;
- 把 x, y, z 表示为齐次坐标中的一个点,按照上面的推断可得;
- 在齐次坐标中,四个分量同时乘同一个数,仍是同一个点,因此得到;
- 所以可以知道,如果要把远平面的点投影到近平面的点,就可以通过乘上矩阵实现;
- 这样就可以推断,等于;
- 接下来是两个观察:
- 近平面上的点,挤压完仍是同一个点;
- 远平面上点的 z 坐标,挤压完仍是不变的;
- 近平面: 如果有一个近平面上的点,它就可以这样转化:;
- 将这个特殊的 case 代进之前的矩阵公式中:;
- 对照乘积中的,可得矩阵第三行会是 (0, 0, A, B),之所以有 A、B 是因为无法确定如何组合出;
- 这里推出的公式可以简化为:;
- 远平面: 这次的特殊 case 是远平面的中心点,它挤压之后所有坐标都不会变;
- 可得推论:;
- 代入矩阵公式,顺便简化一下得:;
- 结合两个公式解得:、;
- 所以最终的矩阵就是:,这样就将透视投影的公式变成只关于近平面和远平面的 z 坐标了;
- 别急,只是做挤压的矩阵,挤压完还要做正交投影才是最终结果;
- 加上正交投影应该是这样:;
- 作业: 对于 z 在 n 和 f 中间的一个点,比如 (n+f)/2,它在挤压后是离远平面近还是近平面近?